ANSWERS/HINTS

EXERCISE 1.1

1.	(i) $2^2 \times 5^2$	5×7	(ii) $2^2 \times 3 \times 13$	(iii) $3^2 \times 5^2 \times 17$	
	(iv) 5×7	×11×13	(v) $17 \times 19 \times 23$		
2.	(i) LCM	I = 182; HCF = 13	(ii) LCM = 23460; HCF = 2	2 (iii) $LCM = 3024; H$	ICF=6
3.	(i) LCM	I = 420; HCF = 3	(ii) LCM = 11339; HCF = 1	(iii) $LCM = 1800; H$	ICF = 1
4.	22338		7. 36 minutes		
				S ⁺	
			EXERCISE 2.1		
1.	(i) No ze	eroes (ii) 1	(iii) 3 (iv) 2	(v) 4 (vi) 3	
			EXERCISE 2.2		
1.	(i) -2, 4		(ii) $\frac{1}{2}, \frac{1}{2}$	(iii) $-\frac{1}{3}, \frac{3}{2}$	
	(iv) -2,0	~0	(v) $-\sqrt{15}, \sqrt{15}$	(vi) $-1, \frac{4}{3}$	

2. (i) $4x^2 - x - 4$ (ii) $3x^2 - 3\sqrt{2}x + 1$ (iii) $x^2 + \sqrt{5}$ (iv) $x^2 - x + 1$ (v) $4x^2 + x + 1$ (vi) $x^2 - 4x + 1$

EXERCISE 3.1

1. (i) Required pair of linear equations is

x + y = 10; x - y = 4, where x is the number of girls and y is the number of boys. To solve graphically draw the graphs of these equations on the same axes on graph paper.

Girls = 7, Boys = 3.

Answers/Hints

- (ii) Required pair of linear equations is 5x + 7y = 50; 7x + 5y = 46, where x and y represent the cost (in $\overline{2}$) of a pencil and of a pen respectively. To solve graphically, draw the graphs of these equations on the same axes on graph paper. Cost of one pencil = $\overline{\mathbf{x}}$ 3, Cost of one pen = $\overline{\mathbf{x}}$ 5 2. (i) Intersect at a point (ii) Coincident (iii) Parallel 3. (i) Consistent (ii) Inconsistent (iii) Consistent (iv) Consistent (v) Consistent **4.** (i) Consistent (ii) Inconsistent (iii) Consistent (iv) Inconsistent The solution of (i) above, is given by y = 5 - x, where x can take any value, i.e., there are infinitely many solutions. The solution of (iii) above is x = 2, y = 2, i.e., unique solution. 5. Length = 20 m and breadth = 16 m. 6. One possible answer for the three parts: (i) 3x + 2y - 7 = 0(ii) 2x + 3y - 12 = 0(iii) 4x + 6y - 16 = 07. Vertices of the triangle are (-1, 0), (4, 0) and (2, 3). EXERCISE 3.2 1. (i) x = 9, y = 5(ii) s = 9, t = 6(iii) y = 3x - 3, where x can take any value, i.e., infinitely many solutions.
 - (iv) x=2, y=3 (v) x=0, y=0 (vi) x=2, y=3
- **2.** x = -2, y = 5; m = -1
- 3. (i) x-y=26, x=3y, where x and y are two numbers (x > y); x=39, y=13.
 - (ii) x y = 18, x + y = 180, where x and y are the measures of the two angles in degrees; x = 99, y = 81.
 - (iii) 7x + 6y = 3800, 3x + 5y = 1750, where x and y are the costs (in $\overline{2}$) of one bat and one ball respectively; x = 500, y = 50.
 - (iv) x + 10y = 105, x + 15y = 155, where x is the fixed charge (in $\overline{\bullet}$) and y is the charge (in $\overline{\bullet}$ per km); x = 5, y = 10; $\overline{\bullet} 255$.
 - (v) 11x-9y+4=0, 6x-5y+3=0, where x and y are numerator and denominator of the fraction; $\frac{7}{9}$ (x = 7, y = 9).
 - (vi) x 3y 10 = 0, x 7y + 30 = 0, where x and y are the ages in years of Jacob and his son; x = 40, y = 10.

EXERCISE 3.3

1. (i) $x = \frac{19}{5}, y = \frac{6}{5}$ (ii) x = 2, y = 1 (iii) $x = \frac{9}{13}, y = -\frac{5}{13}$

(iv) x = 2, y = -3

- 2. (i) x y + 2 = 0, 2x y 1 = 0, where x and y are the numerator and denominator of the fraction; $\frac{3}{5}$.
 - (ii) x-3y+10=0, x-2y-10=0, where x and y are the ages (in years) of Nuri and Sonu respectively. Age of Nuri (x) = 50, Age of Sonu (y) = 20.
 - (iii) x + y = 9, 8x y = 0, where x and y are respectively the tens and units digits of the number; 18.
 - (iv) x + 2y = 40, x + y = 25, where x and y are respectively the number of ₹ 50 and ₹ 100 notes; x = 10, y = 15.
 - (v) x + 4y = 27, x + 2y = 21, where x is the fixed charge (in $\overline{\mathbf{x}}$) and y is the additional charge (in $\overline{\mathbf{x}}$) per day; x = 15, y = 3.

EXERCISE 4.1

- 1. (i) Yes(ii) Yes(iii) No(iv) Yes(v) Yes(vi) No(vii) No(viii) Yes
- 2. (i) $2x^2 + x 528 = 0$, where x is breadth (in metres) of the plot.
 - (ii) $x^2 + x 306 = 0$, where x is the smaller integer.
 - (iii) $x^2 + 32x 273 = 0$, where x (in years) is the present age of Rohan.
 - (iv) $u^2 8u 1280 = 0$, where *u* (in km/h) is the speed of the train.

EXERCISE 4.2

- 1. (i) -2, 5
 (ii) -2, $\frac{3}{2}$ (iii) $-\frac{5}{\sqrt{2}}, -\sqrt{2}$

 (iv) $\frac{1}{4}, \frac{1}{4}$ (v) $\frac{1}{10}, \frac{1}{10}$

 2. (i) 9, 36
 (ii) 25, 30

 3. Numbers are 13 and 14.
 4. Positive integers are 13 and 14.
- 5. 5 cm and 12 cm 6. Number of articles = 6, Cost of each article = ₹ 15

EXERCISE 4.3

1.	(i) Real roots do	not exist (ii) Equal roots; -	$\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}$ (iii) Distinct roots; $\frac{3 \pm \sqrt{3}}{2}$
2.	(i) $k = \pm 2\sqrt{6}$	(ii) $k = 6$	
3.	Yes. 40 m, 20 m	4. No	5. Yes. 20 m, 20 m

EXERCISE 5.1

- (i) Yes. 15, 23, 31, ... forms an AP as each succeeding term is obtained by adding 8 in its preceding term.
 - (ii) No. Volumes are V, $\frac{3V}{4}$, $\left(\frac{3}{4}\right)^2$ V, ... (iii) Yes. 150, 200, 250, ... form an AP.
- (iv) No. Amounts are $10000 \left(1 + \frac{8}{100}\right), 10000 \left(1 + \frac{8}{100}\right)^2, 10000 \left(1 + \frac{8}{100}\right)^3, \dots$ **2.** (i) 10, 20, 30, 40 (ii) -2, -2, -2, -2 (iii) 4, 1, -2, -5 (iv) -1, $-\frac{1}{2}, 0, \frac{1}{2}$ (v) -1.25, -1.50, -1.75, -2.0

3. (i)
$$a = 3, d = -2$$
 (ii) $a = -5, d = 4$
(iii) $a = \frac{1}{3}, d = \frac{4}{3}$ (iv) $a = 0.6, d = 1.1$

- 4. (i) No (ii) Yes. $d = \frac{1}{2}$; 4, $\frac{9}{2}$, 5 (iii) Yes. d = -2; -9.2, -11.2, -13.2 (iv) Yes. d = 4; 6, 10, 14 (v) Yes. $d = \sqrt{2}$; $3 + 4\sqrt{2}$, $3 + 5\sqrt{2}$, $3 + 6\sqrt{2}$ (vi) No (vii) Yes. d = -4; -16, -20, -24 (iv) Yes. d = 0; $-\frac{1}{2}$, $-\frac{1}{2}$, $-\frac{1}{2}$ (iv) No (viii) Yes. d = 0; $-\frac{1}{2}$, $-\frac{1}{2}$, $-\frac{1}{2}$ (iv) No (viii) Yes. d = 0; $-\frac{1}{2}$, $-\frac{1}{2}$, $-\frac{1}{2}$
 - (xiii) No (xiv) No (xv) Yes. d = 24; 97, 121, 145

EXERCISE 5.2

1. (i) $a_n = 28$ (ii) d = 2 (iii) a = 46 (iv) n = 10 (v) $a_n = 3.5$

254

2. (i) C (ii) B $6\frac{1}{2}, 8$ **3.** (i) 14 (ii) **18**, **8** (iii) (iv) -2 , 0 , 2 , 4 53, 23, 8, -7 (v) **4.** 16th term **5.** (i) 34 (ii) 27 7. 178 8. 64 6. No 9. 5th term 10. 1 11. 65th term 12. 100 13. 128 14. 60 **15.** 13 **16.** 4, 10, 16, 22, ... **17.** 20th term from the last term is 158. **18.** -13, -8, -3 **19.** 11th year **20.** 10 **EXERCISE 5.3** $\frac{33}{20}$ (i) 245 (ii) -180 (iii) 5505 (iv) 1. 2. (i) 1046 $\frac{1}{2}$ (ii) 286 (iii) -8930 **3.** (i) n = 16, $S_n = 440$ (ii) $d = \frac{7}{2}$, $S_{13} = 273$ (iii) a = 4, $S_{12} = 246$ (v) $a = -\frac{35}{3}$, $a_9 = \frac{85}{3}$ (vi) n = 5, $a_n = 34$ (iv) $d = -1, a_{10} = 8$ (vii) $n = 6, d = \frac{54}{5}$ (viii) n = 7, a = -8(ix) d = 6(x) a = 44. 12. By putting a = 9, d = 8, S = 636 in the formula $S = \frac{n}{2}[2a + (n-1)d]$, we get a quadratic equation $4n^2 + 5n - 636 = 0$. On solving, we get $n = -\frac{53}{4}$, 12. Out of these two roots only

5. n = 16, $d = \frac{8}{3}$ **6.** n = 38, S = 6973 **7.** Sum = 1661 **8.** $S_{51} = 5610$ **9.** n^2 **10.** (i) $S_{15} = 525$ (ii) $S_{15} = -465$

one root 12 is admissible.

Answers/Hints

11. $S_1 = 3, S_2 = 4; a_2 = S_2 - S_1 = 1; S_2 = 3, a_3 = S_2 - S_2 = -1,$ $a_{10} = S_{10} - S_{9} = -15; \ a_n = S_n - S_{n-1} = 5 - 2n.$ 13. 960 12. 4920 14. 625 15. ₹ 27750 **16.** Values of the prizes (in ₹) are 160, 140, 120, 100, 80, 60, 40. 17. 234 18. 143 cm **19.** 16 rows, 5 logs are placed in the top row. By putting S = 200, a = 20, d = -1 in the formula S = $\frac{n}{2}[2a + (n-1)d]$, we get, $41n - n^2 = 400$. On solving, n = 16, 25. Therefore, the number of rows is either 16 or 25. $a_{25} = a + 24d = -4$ i.e., number of logs in 25th row is -4 which is not possible. Therefore n = 25 is not possible. For n = 16, $a_{16} = 5$. Therefore, there are 16 rows and 5 logs placed in the top row. 20. 370m **EXERCISE 5.4 (Optional)* 2.** $S_{16} = 20,76$ 1. 32nd term 3. 385 cm 5. 750 m³ 4. 35 EXERCISE 1. (i) Similar (ii) Similar (iii) Equilateral (iv) Equal, Proportional 3. No **EXERCISE 6.2** (ii) 2.4 cm 1. (i) 2 cm (ii) Yes 2. (i) No (iiii) Yes 9. Through O, draw a line parallel to DC, intersecting AD and BC at E and F respectively. **EXERCISE 6.3** 1. (i) Yes. AAA, \triangle ABC ~ \triangle PQR (ii) Yes. SSS, $\triangle ABC \sim \triangle ORP$ (iv) Yes. SAS, Δ MNL ~ Δ QPR (iii) No (v) No (vi) Yes. AA, Δ DEF ~ Δ PQR **2.** 55°, 55°, 55° 14. Produce AD to a point E such that AD = DE and produce PM to a point N such that PM = MN. Join EC and NR. 15. 42m

EXERCISE 7.1

1.	(i) $2\sqrt{2}$	(ii) $4\sqrt{2}$	(iii)	$2\sqrt{a^2+b^2}$	
2.	39; 39 km	3. No	4. Yes	5. Cl	nampa is correct.
6.	(i) Square	(ii) No quada	rilateral	(iii) Parallel	ogram
7.	(-7,0)	8. -9,3	9.	\pm 4, QR = $\sqrt{41}$, P	$R = \sqrt{82}, 9\sqrt{2}$
10.	3x + y - 5 = 0				
		EX	ERCISE	7.2	
1.	(1,3)	$2. \left(2, -\frac{5}{3}\right); \left(0\right)$	$\left(-\frac{7}{3}\right)$		nev.
3.	$\sqrt{61}$ m; 5th line at	a distance of 22.	5 m	4. 2:7	
5.	$1:1; \left(-\frac{3}{2}, 0\right)$	5. $x = 6, y = 3$		7. (3, -10)	
8.	$\left(-\frac{2}{7},-\frac{20}{7}\right)$	$0. \ \left(-1,\frac{7}{2}\right), \ (0,$	$5), \left(1, \frac{13}{2}\right)$	10. 24 sq. unit	S
			ERCISE		
1.	(i) $\sin A = \frac{7}{25}, c$	$\cos A = \frac{24}{25}$	(ii) sin C	$=\frac{24}{25}$, $\cos C = \frac{7}{25}$	
2.	0 3.	$\cos A = \frac{\sqrt{7}}{4}, \tan \theta$	$A = \frac{3}{\sqrt{7}}$	4. sin A	$=\frac{15}{17}$, sec A $=\frac{17}{8}$
5.	$\sin\theta = \frac{5}{13}, \cos\theta =$	$\frac{12}{13}, \tan \theta = \frac{5}{12},$	$\cot \theta = \frac{12}{5}$	$e \csc \theta = \frac{13}{5}$	
7.	(i) $\frac{49}{64}$	(ii)	$\frac{49}{64}$	٤	3. Yes
9.	(i) 1 (ii) 0	10.	$\sin P = \frac{12}{13}$	$r \cdot \cos P = \frac{5}{13} \cdot \tan P$	$=\frac{12}{5}$
11.	(i) False (i	i) True (i	ii) False	(iv) False	(v) False

EXERCISE 8.2

1.	(i) 1	(ii) 2	(iii) $\frac{3\sqrt{2}}{8}$	$\sqrt{6}$	(iv) $\frac{43 - 24\sqrt{3}}{11}$	(v) $\frac{67}{12}$
2.	(i) A	(ii) D	(iii) A	(iv) C	3. ∠A=45	$5^{\circ}, \ \angle B = 15^{\circ}$
4.	(i) False	(ii) True	(iii)	False	(iv) False	(v) True

EXERCISE 8.3

1.
$$\sin A = \frac{1}{\sqrt{1 + \cot^2 A}}, \ \tan A = \frac{1}{\cot A}, \ \sec A = \frac{\sqrt{1 + \cot^2 A}}{\cot A}$$

2.
$$\sin A = \frac{\sqrt{\sec^2 A - 1}}{\sec A}, \cos A = \frac{1}{\sec A}, \tan A = \sqrt{\sec^2 A - 1}$$

$$\cot A = \frac{1}{\sqrt{\sec^2 A - 1}}, \operatorname{cosec} A = \frac{\sec A}{\sqrt{\sec^2 A - 1}}$$

EXERCISE 9.1

1. 10m2. $8\sqrt{3}$ m3. $3m, 2\sqrt{3}$ m4. $10\sqrt{3}$ m5. $40\sqrt{3}$ m6. $19\sqrt{3}$ m7. $20(\sqrt{3}-1)$ m8. $0.8(\sqrt{3}+1)$ m9. $16\frac{2}{3}$ m10. $20\sqrt{3}$ m, 20 m, 60 m11. $10\sqrt{3}$ m, 10 m12. $7(\sqrt{3}+1)$ m13. $75(\sqrt{3}-1)$ m14. $58\sqrt{3}$ m15. 3 seconds

EXERCISE 10.1

Infinitely many
 (i) One (ii) Secant (iii) Two (iv) Point of contact
 D

EXERCISE 10.2

1. A	2. B	3. A	6. 3 cm
7. 8 cm	12. $AB = 15 \text{ cm}$	AC = 13 cm	

257

Rationalised 2023-24

EXERCISE 11.1

1.	$\frac{132}{7}$ cm ²	2. $\frac{77}{8}$ cm ²	3. $\frac{154}{3}$ cm ²	
4.	(i) $28.5 \mathrm{cm}^2$	(ii) 235.5cm^2		
5.	(i) 22 cm	(ii) 231 cm ²	(iii) $\left(231 - \frac{44}{3}\right)$	$\left(\frac{41\sqrt{3}}{4}\right)$ cm ²
6.	20.4375 cm ² ; 686	$.0625{\rm cm}^2$	7. $88.44 \mathrm{cm}^2$	
8.	(i) $19.625 m^2$	(ii) $58.875 \mathrm{cm}^2$	9. (i) 285 mm (ii	i) $\frac{385}{4}$ mm ²
10.	$\frac{22275}{28}$ cm ²	11. ¹	$\frac{58125}{126}$ cm ²	12. 189.97 km ²
13.	₹162.68	14. D		. 6
		EXEÎ	RCISE 12.1	
1.	$160\mathrm{cm}^2$	2. 572	cm ² 3. 21	$4.5{\rm cm}^2$
4.	Greatest diameter	= 7 cm, surface area	$= 332.5 \mathrm{cm}^2$	

5. $\frac{1}{4}l^2$ (π + 24) 6. 220 mm² 7. 44 m², ₹ 22000 8. 18 cm² 9. 374 cm²

EXERCISE 12.2

1. $\pi \, cm^3$

2. 66 cm^3 . Volume of the air inside the model = Volume of air inside (cone + cylinder + cone)

 $= \left(\frac{1}{3}\pi r^2 h_1 + \pi r^2 h_2 + \frac{1}{3}\pi r^2 h_1\right), \text{ where } r \text{ is the radius of the cone and the cylinder, } h_1 \text{ is the height (length) of the cone and } h_2 \text{ is the height (length) of the cylinder.}$

Required Volume =
$$\frac{1}{3}\pi r^2 (h_1 + 3h_2 + h_1)$$
.
3. 338 cm³ **4.** 523.53 cm³ **5.** 100 **6.** 892.26 kg

EXERCISE 13.1

1. 8.1 plants. We have used direct method because numerical values of x_i and f_i are small.

2.	₹545.20	3. <i>f</i> =20	4. 75.9
5.	57.19	6. ₹ 211	7. 0.099 ppm
8.	12.48 days	9. 69.43 %	

EXERCISE 13.2

- 1. Mode = 36.8 years, Mean = 35.37 years. Maximum number of patients admitted in the hospital are of the age 36.8 years (approx.), while on an average the age of a patient admitted to the hospital is 35.37 years.
- **2.** 65.625 hours
- 3. Modal monthly expenditure = ₹ 1847.83, Mean monthly expenditure = ₹ 2662.5.
- 4. Mode : 30.6, Mean = 29.2. Most states/U.T. have a student teacher ratio of 30.6 and on an average, this ratio is 29.2.
- **5.** Mode = 4608.7 runs **6.** Mode = 44.7 cars

EXERCISE 13.3

1. Median = 137 units, Mean = 137.05 units, Mode = 135.76 units.

The three measures are approximately the same in this case.

- **2.** x = 8, y = 7 **3.** Median age = 35.76 years
- **4.** Median length = 146.75 mm **5.** Median life = 3406.98 hours
- 6. Median = 8.05, Mean = 8.32, Modal size = 7.88
- 7. Median weight = 56.67 kg

EXERCISE 14.1

- **1.** (i) 1 (ii) 0, impossible event (iii) 1, sure or certain event (iv) 1 (v) 0, 1
- 2. The experiments (iii) and (iv) have equally likely outcomes.
- **3.** When we toss a coin, the outcomes head and tail are equally likely. So, the result of an individual coin toss is completely unpredictable.

4. B **5.** 0.95 **6.** (i) 0 (ii) 1

- 7. 0.008 8. (i) $\frac{3}{8}$ (ii) $\frac{5}{8}$
- 9. (i) $\frac{5}{17}$ (ii) $\frac{8}{17}$ (iii) $\frac{13}{17}$ 10. (i) $\frac{5}{9}$ (ii) $\frac{17}{18}$

11. $\frac{5}{13}$	3		12. (i) $\frac{1}{8}$	(ii) $\frac{1}{2}$ (iii) $\frac{3}{4}$	(iv) 1		
13. (i)	$\frac{1}{2}$ (ii) $\frac{1}{2}$	(iii)	$\frac{1}{2}$					
14. (i)	$\frac{1}{26}$ (ii)	$\frac{3}{13}$	(iii) $\frac{3}{26}$	(iv) $\frac{1}{52}$	(v)	$\frac{1}{4}$	(vi)	$\frac{1}{52}$
15. (i)	$\frac{1}{5}$ (ii)	(a) $\frac{1}{4}$	(b) 0	16.	$\frac{11}{12}$			
17. (i)	$\frac{1}{5}$ (ii)	$\frac{15}{19}$	18. (i) $\frac{9}{10}$	(ii) $\frac{1}{10}$	(iii	$)\frac{1}{5}$		
19. (i)	$\frac{1}{3}$ (ii)	$\frac{1}{6}$	20. $\frac{\pi}{24}$	21.	(i) $\frac{31}{36}$	(ii	$) \frac{5}{36}$	
22. (i)	Sum on 2 dice	2	3 4 5	6 7	8 9	10	11	12
	Probability	$\frac{1}{36}$	$\frac{2}{36} = \frac{3}{36} = \frac{4}{36}$	$\begin{array}{c c} 5\\\hline 36\\\hline 36\\\hline \end{array} \begin{array}{c} 6\\\hline 36\\\hline \end{array}$	$\frac{5}{36} \frac{4}{30}$	$\frac{1}{5}$ $\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

- (ii) No. The eleven sums are not equally likely.
- 23. $\frac{3}{4}$; Possible outcomes are : HHH, TTT, HHT, HTH, HTT, THH, THT, TTH. Here, THH means tail in the first toss, head on the second toss and head on the third toss and so on.

24. (i)
$$\frac{25}{36}$$
 (ii) $\frac{11}{36}$

- 25. (i) Incorrect. We can classify the outcomes like this but they are not then 'equally likely'. Reason is that 'one of each' can result in two ways from a head on first coin and tail on the second coin or from a tail on the first coin and head on the second coin. This makes it twicely as likely as two heads (or two tails).
 - (ii) Correct. The two outcomes considered in the question are equally likely.

EXERCISE A1.1

- 1. (i) Ambiguous (ii) True (iii) True (iv) Ambiguous (v) Ambiguous
- 2. (i) True (ii) True (iii) False (iv) True (v) True
- 3. Only (ii) is true.
- 4. (i) If a > 0 and $a^2 > b^2$, then a > b.
 - (ii) If $xy \ge 0$ and $x^2 = y^2$, then x = y.
 - (iii) If $(x + y)^2 = x^2 + y^2$ and $y \neq 0$, then x = 0.
 - (iv) The diagonals of a parallelogram bisect each other.

EXERCISE A1.2

- **1.** A is mortal **2.** *ab* is rational
- 3. Decimal expansion of $\sqrt{17}$ is non-terminating non-recurring.
- **4.** y = 7 **5.** $\angle A = 100^{\circ}, \angle C = 100^{\circ}, \angle D = 180^{\circ}$
- 6. PQRS is a rectangle.
- 7. Yes, because of the premise. No, because $\sqrt{3721} = 61$ which is not irrational. Since the premise was wrong, the conclusion is false.

EXERCISE A1.3

1. Take two consecutive odd numbers as 2n + 1 and 2n + 3 for some integer *n*.

EXERCISE A1.4

- **1.** (i) Man is not mortal.
 - (ii) Line *l* is not parallel to line *m*.
 - (iii) The chapter does not have many exercises.
 - (iv) Not all integers are rational numbers.
 - (v) All prime numbers are not odd.
 - (vi) Some students are lazy.
 - (vii) All cats are black.
 - (viii) There is at least one real number x, such that $\sqrt{x} = -1$.

- (ix) 2 does not divide the positive integer *a*.
- (x) Integers *a* and *b* are not coprime.
- 2. (i) Yes (ii) No (iii) No (iv) No (v) Yes

EXERCISE A1.5

- **1.** (i) If Sharan sweats a lot, then it is hot in Tokyo.
 - (ii) If Shalini's stomach grumbles, then she is hungry.
 - (iii) If Jaswant can get a degree, then she has a scholarship.
 - (iv) If a plant is alive, then it has flowers.
 - (v) If an animal has a tail, then it is a cat.
- 2. (i) If the base angles of triangle ABC are equal, then it is isosceles. True.
 - (ii) If the square of an integer is odd, then the integer is odd. True.
 - (iii) If x = 1, then $x^2 = 1$. True.
 - (iv) If AC and BD bisect each other, then ABCD is a parallelogram. True.
 - (v) If a + (b + c) = (a + b) + c, then a, b and c are whole numbers. False.
 - (vi) If x + y is an even number, then x and y are odd. False.
 - (vii) If a parallelogram is a rectangle, its vertices lie on a circle. True.

EXERCISE A1.6

- 1. Suppose to the contrary $b \le d$.
- 3. See Example 10 of Chapter 1.
- 6. See Theorem 5.1 of Class IX Mathematics Textbook.

EXERCISE A2.2

- **1.** (i) $\frac{1}{5}$ (ii) 160
- **2.** Take 1 cm² area and count the number of dots in it. Total number of trees will be the product of this number and the area (in cm²).
- **3.** Rate of interest in instalment scheme is 17.74 %, which is less than 18 %.

EXERCISE A2.3

1. Students find their own answers.